1.
Знакомая из соседнего ВУЗа попросила помочь с домашками. Взял методичку и в первом же задании обнаружил косяк: не хватает исходных данных. Грубо говоря, задача “x+y+z=N, найдите N, если
x=2, y=3”.
Говорю знакомой:
– Сходи к преподу, спроси, что делать-то? Исходных данных же не хватает.
– Ой, не, я не пойду, я его боюсь, он такой строгий!
Пошёл сам. В преподавательской обнаружил аспиранта, спросил у него. Тот даже не попытался вникнуть в вопрос: “до вас же как-то все делали, вы просто тупой, раз не понимаете! ”. Я настаивал, аспирант упирался, дискуссия плавно перерастала в скандал. На шум из соседней аудитории пришёл тот самый строгий препод и потребовал объяснить, что происходит.
Я объяснил, показал, препод сказал “хм” и завис с выражением лица “а что же делать? ”.
– А можно я в начале решения напишу что-то вроде “примем Z равным такому-то значению и дальше решу задачу? ”, – предложил я ему.
– Да, да, конечно, вы правы, раз такая ситуация…
И уже выходя из преподавательской я услышал его слова, обращенные ко всем там присутствовавшим:
– А как раньше эту задачу решали студенты? Методичке-то уже больше 10 лет!
2.
Тут уже мне понадобилась помощь, так как в физике я не шарил. Обратился к местным общаговским экспертам, которые за копейки делали такие вещи. Когда пришел забирать решения, чувак мне сказал:
– Смотри, в твоем случае есть нюанс. Вот в этой задаче результат в минус 19 степени. Когда ты покажешь его преподу, она скажет, что у тебя ошибка. Но на самом деле ошибка у них, причем очень давно, у них результат в минус 16 степени. Мы уже несколько раз перепроверяли. Поэтому ты ей скажи вот что…
Дальше он мне что-то объяснял, но я ни слова не понял, так как предмет для меня был непонятный. Я сказал “спасибо” и побрёл в аудиторию, надеясь, что препод ошибку просто не заметит, потому что я не смог бы ей объяснить абсолютно ничего.
Зря надеялся, ошибку она заметила:
– У тебя тут ошибка в порядке, перепроверь.
Я сел и тупо уставился на формулы. Я ничегошеньки там не понимал и понятия не имел, что делать дальше. Как вдруг меня осенило:
– Галина Ивановна, кажется я нашёл! – я сказал это с места в аудитории, чтобы не подходить к ней и не показывать формулы, в которых я бы ну никак не смог бы указать на потенциально проблемное место в вычислениях. – Там и правда ошибка в порядке, должно быть в минус 16, а не 19, правильно?
Препод заглянула в свои бумажки:
– Да, всё так, свободен. Допуск к экзамену у тебя есть.
3.
Я уже был на 5 курсе когда эту историю мне рассказала препод с нашей кафедры.
Она была в числе тех, кто проверял результаты абитуриентов, поступающих в наш ВУЗ. Хотя точнее не так. Результаты проверялись автоматически не компьютере, а потому ответы должны были быть рациональными числами (то есть ответы типа “корень из двух” или “одна целая и 3 в периоде” просто не принимались и заведомо были ошибочными). Преподаватели же проверяли те задачи, по которым абитуриенты обращались с жалобами (было тогда такое понятие, как “апелляция”). И конечно же в некоторых задачах находились проблемы, при решении которых получались те самые иррациональные результаты.
Все эти задачи были тщательно зафиксированы (примерно 10-15 штук) и после окончания вступительных экзаменов представлены заведующему кафедрой высшей математики, который отвечал за качество вступительных экзаменационных заданий.
Он посмотрел на это всё и спросил:
– Так и что вы хотите чтобы я с этим сделал?
Преподы немного охренели:
— Как это “что”? Это заведомо нерешаемые задачи, абитуриенты никогда не смогут дать на них правильный ответ! Их надо либо заменить, либо поменять условия, чтобы ответ принимался системой!
Завкафедрой устало помахал им ручкой:
— Послушайте! В каждом билете 10 заданий, для получения оценки “отлично” необходимо 8 правильных ответов. Если абитуриент толковый – он решит правильно 9 заданий, а десятое… ну, десятое окажется вот этим нерешаемым, ну и что? Свою пятёрку он же получит. А менять экзаменационные задачи — это же столько времени…